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Scattering of a Plane Electromagnetic Wave
From a Semicircular Crack in a Perfectly

Conducting Ground Plane

1. INTRODUCTION

The problem of scattering from, and coupling through, cracks and gaps arises when

considering antennas and scatterers assembled from many subsections that meet to form

cracks and gaps.

The crack problem has been studied by many people including Lord Rayleigh, who

considered the problem of plane wave scattering from a half-cylindrlical indentation in a

ground plane. I In this paper he actually solved the half-cylindrical excrescence (protuberance)

problem, with some discussion of experimental techniques related to the indentation, or

crack, problem. The related problem of scattering from a slit in an infinitely thin screen has

Received for publication 31 March 1989

I Lord Rayleigh (1907) On the light dispersed from fine lines ruled upon reflecting surfaces or

transmitted by very narrow slits, Phil Mag, 14:350.
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been extensively studied, 2 . 3. 4 as has the scattering from a slit in a thick screen.5 . 6. 7. 8

Integral equations, experimental methods, and pure numerical techniques, such as finite-

difference time domain, have been used to study the scattering from indentations in a ground

plane.9 10. 11 The related problem of scattering from a cavity-backed slit has been considered

recently using dual-series techniques. 12

This report presents a dual-series eigenfunction approach to scattering of electromagnetic

plane waves from a half-cylindrical (circular) indentation in a ground plane. We use to our

advantage the coincidence of the problem geometry and a constant coordinate surface in

circular cylindrical coordinates. The main difference between our analysis and typical

eigenfunction problems lies in the incomplete orthogonality of the sinusoids over a half space,

and the use of two separate regions of the problem.
Usefulness of the solution is primarily in the small-crack results, which are valid in the

case where the radius of the crack is much smaller than the wavelength of the incident plane
wave. For both the transverse magnetic and transverse electric polarizations, the ka-

dependence can be removed from the necessary numerical matrix inversion when the crack is
small. The matrix inversion need only be performed once for each polarization and it results

in a constant coefficient for each case. Since the small-crack results are then functions of ka,

the two results (TM and TE) can be used to consider cases where the incident field is not

normal to the axis of the small crack.

2 Bouwkamp, C.J. (1954) Diffraction theory, Rep Prog Phys, 17:35.

3 Chow, T.Y., and Adams, A.T. (1977) The coupling of electromagnetic waves through long
slots, IEEE T-EMC, 19:65.

4 Butler, C.M., Rahmat-Samli, Y., and Mittra, R. (1978) Electromagnetic penetrations through
apertures in conducting surfaces, IEEE T-EMC, 20:82.

5 Kashyap, S.C., and Hamid, M.A.K. (1971) Diffraction characteristics of a slit in a thick
conducting screen, IEEE T-AP, 19(No. 4):499.
6 Hongo, K., and Ishil, G. (1978) Diffraction of an electromagnetic plane wave by a thick slit,
IEEE T-AP 26(No. 3):494.

7 Harrington, R.F., and Auckland, D.T. (1980) Electromagnetic transmission through narrow
slots in thick conducting screens, IEEE T-AP, 28:120.
8 Taflove, A., Umashankar, K.R., Beker, B., Harfoush, F., and Yee, K.S. (1988) Detailed FD-TD
analysis of electromagnetic fields penetrating narrow slots and lapped Joints in thick
conducting screens, IEEE T-AP. 36(No. 2):247.

9 White, G.S., and Feldman, A. (1981) Diffraction from a shallow rectangular groove, Applied
Optics, 20(No. 14):2585.
10 White, G.S., and Marchiando, J.F. (1983) Scattering from a V-shaped groove in the
resonance domain, Applied Optics, 22(No. 15):2303.

11 Dominek, A.K., Shamanski, H.T., and Wang, N. (1988) Scattering from Three-Dimensional
Cracks. Ohio State University (preprint).
12 Ziolkowski, R.W., and Grant. J.B. (1987) Scattering from cavity-backed aperture, IEEE T-AP,
35(No. 5:504.
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2. TRANSVERSE MAGNETIC POLARIZATION

2.1 Problem Geometry

We consider a Transverse Magnetic (TM) plane wave that is polarized in the z-direction and

makes an angle 01nc with the positive x-semiaxis. It Is incident upon and scatters from a half-
cylindrical indentation or crack in the ground plane, as shown in Figure 1.

Y

In

r=a

Figure 1. Problem Geometry for Incident TM Waves

The crack is of radius r = a and of infinite extent in the z-direction. All angles are

measured positive in the counterclockwise direction starting with 0 = 0 along the positive x-

semiaxs. Angles are in the range 0 < 0 < 2ur. The crack is thus described by r<0 < 2n and

r = a. The surface 0 < 0 < r and r = a is referred to as the aperture. It is the region

complementary to the crack. The problem will be formulated so that boundary conditions
along the ground plane will be automatically satisfied, and then three boundary conditions

will be applied at the surface r = a: one on the crack and two across the aperture. We define

the r > a to be the exterior region and r < a to be the interior region, and the fields in these
regions are the exterior and interior fields respectively.

2.2 Exterior Field

The incident field is a plane wave as discussed above. We write

E Ir- = e 1kr co 0-0 , (I)
z
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where unit amplitude has been assumed and ekt time dependence suppressed. This plane wave

has the following well-known expansion in terms of cylindrical Bessel functions 13

EInc ln J (kr)e " ( '_- u ) .
z n (2)

In the exterior region the scattered field will be considered to be made up of two parts. The

first is the reflected wave that would be present if there were no crack, and the second is the

deviation from this caused by diffraction at the crack. Thus, in the exterior region we refer to

the incident, reflected, and diffracted waves. We are, of course, most interested in the

diffracted field.
The reflected wave is also a plane wave and is well-known. We have ,ref 2?r - oinc so that

the reflected plane wave can be written as

Eref = _ekr co40+0 . (3)
z

In terms of cylindrical Bessel functions we have

E~e =- "J (k r) e'n( + c) .
nu-- (4)

For the diffracted wave in the exterior region (r > a. 0 < 0 < n) we write

E'*~ A AH (2 ) ( k r ) s l n no. 5

n=o

where An Is an unknown modal coefficient and we have expanded this outgoing wave In terms

of Hankel functions (of the second kind) and also sin no. Noting that because sin 0 =
sin nir = 0, the diffracted wave vanishes on the ground plane and so satisfies the boundary
condition there. Calling the interior Region I and the exterior Region 2, the electric fields

become respectively, El and E 2 . If we write the total field in the exterior region as

13 Morse, P.M., and Feshbach, H. (1953) Methods of Theoretical Physics, McGraw-Hill Book
Company, New York.

4



E2 = E e + ref + Oif
E= +E 7 . , (6)

we see that E2 = 0 for 0 = 0. n that is, on the ground plane.
z

2.3 Interior Field

In the interior region the total E_-field can be written

El DJ(kr)e'7
z n n

un-__ (7)

where Dn is an unknown modal coefficient. However, it will be more convenient for our

analysis if we write this as

EI= 1 J(kr)(B cos no+ Cnsinn), (8)

r.-0

where Bn and Cn are the modal coefficients that will be determined from the boundary

conditions.

2.4 Total Exterior Field

We now wish to write the incident and reflected Es-flelds as series over n = 0 to rather

than over all n. We note that Jn(kr) = (-llnJl(kr),

ir L= (9)E =-Jo(k r) + i' Inkr)e+n-' + Innk r) e-'n(' -  9

".0 n=O

or

E - Jo(kr) + 2 j n )(kr)cos ,(o - o 'u) (10)
n=O

5



Similarly for the reflected wave we write

E f = 0Jo(kr) - 2 j inJ(kr)cosn(¢ +€ ,nc). ( 1)

Hence,

Ec + E e=2 1 tJ(k r)Fcos n -p cos + (12)
z z n

rn=O

If we use the trigonometric identity cos(a + b) = cos a cos b 4± sin a sin b we can write

E i nc + E ref =4 %(kr)sin no in n nEs' '=4 n sin he.,
z z (13)

Recalling the diffracted field, we have

Ez 1rJ (kr)sin no +AnHn2(kr)]sin no, (14)
n1=0

for the exterior field. In this expression, An is the modal coefficient that we desire.

2.5 Magnetic Field Component

The p-component of the magnetic field is also of Interest in this problem. It Is related to
E by

H rZE, (15)

so that the exterior and interior Ho -fields are

6



H 4inj(kr) sin nonc+An H sin no, (16)
0*1 n=O

and

f, =_-k Y XJ,(k- cB os no + C sin no. 7

where J'(z) = D J(z).

2.6 Boundary Conditions

The required boundary conditions for solving this TM problem are

2
E = 0 for r = a and r < < 21r, (18)

E 2 =E for r=aand 0< < i(
z z (19)

2 1
H=H forr=aandO<o<r.* * (20)

The first condition enforces zero tangential electric field on the surface of the perfectly

reflecting crack and the last two ensure continuous tangential electric and magnetic fields

across the aperture, or (imaginary) surface that is complementary to the crack.

The boundary conditions give the following three equations

Jka)B cos nol + . J(ka)C n sin no, =0. (21)
n.mO n=0

7



J(ka)B, cos n0 2 + J(ka)C sin n02 (22)
n=O n=O

41nj (ka) sin no' +AH 2 ka)]sinn 2o
n 2 nn 2

n=0

n J'(ka)B cos n 2 + J'(ka)C sinnn (23)
rtO n=0

4 X [uj'casinc +CAH(2 ) (ka)]I sin n
n=O

where we must keep in mind that Eq. (21) is valid for ir < 01 < 2r and Eqs. (22) and (23) are

valid for 0 < 2 < ir.

Now define the following for convenience

F =4n J(ka) sin no ''  +A H(2)(ka) - CJ(ka), (24)

G = BnJ(ka), (25)

R n- CJ(ka), (26)

aF

as well as F' n and so on. The Boundary Condition equations are thena a(ka)

G cos no1 = R sin n,(27)
rmO n--

for ir < 01 < 2yr and

XG COS n02  F Fsin n02 . (8no 0

nt 0 ri O

. ... . . -- .m m m mm m mmmmmm u alr ilr -- 8



GCOS n02 ---- Fsnn 2 . (29)
n=O n=O

for 0 < 02 <Yr.

In Eq. (27) we make the change of variables 0 = - Yr so that we have

SG cos n(o + Yr)= Rsin n(0 + 4r), (30)
=O n=O

for 0 < 0 < n. Noting that cos n(O+ ir) = (-I) cos no and sin n(B+ r) = (- 1 )n sin nO we have

1 (-l)Gn cOs n= E 1)nRnsin nrO, (31)
r=O n=O

for 0 < 0 < n. Thus, we see that all three Boundary Condition equations are of the form

G cosn= F sinn, (32)
n=0 Mo

where 0 < <x.

2.7 Orthogonallty

We now make use of the following orthogonality relations among the sinusoids

f sin no sin m'do 5 m. n= 0m (33)

if n-m is even (34)

Josin nCos if n- is odd

n 2
_ m

2
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We multiply Eq. (32) by sin mo and integrate from 0 to x,

XGcos no sin mo d=j XFsin no sin O d35.

Exchanging the sums and integrals and applying the orthogonality relations gives

2i( mGn  Ir)Fm, (36)n m 2_n 2 2 m 36

where I* is used to indicate a sum over n from zero to infinity where (n - m) is odd. Writing

the even-odd behavior explicitly.

- mGF =4 1
mF= rv 1,3.5 2_ (37)

- mG

M , 2_ n2 (38)Fr° O. m02,4 m n

Referring to our previous definitions for Fn, Gn and Rn we write

M Moln (2) 0B J(ka)
41 m J(ka) sin m4, + A H 2 (ka) - CJ(ka) = n __na

m m m M2_ 2 (39)

4m inc (h2)(b B XJ(ka)
J'(ka) sin mo + A H)(ka) +AC X(ka) (0 )+r 2_ 2 (40)

and

10



CrnJr2(ka) = 4m * BJa(ka) (41)

These three equations can now be used to solve for the three modal coefficients A,, B, and C ,.

2.8 Solution for Modal Coefficients

Although the modal coefficients of interest in this problem are A n , it is not possible to

solve for them directly. Rather, we use Eqs. (39) and (40) to eliminate An, and after some

algebra use Eq. (41) to eliminate C,. The resulting expression may then be solved for Bn, and

given that, we merely backsubstitute to get An.

Solving Eqs. (39) and (40) for A, and equating them gives the relation

-4i m J (ka)H (2)'(ka) sin rn4mi + C J (ka)H(2)' (ka) (42)

(2)' ( n BJn(ka)
+ H (ka) n . 2_ n2

i nm 2 - n2= 4 m JX (ka)H ()H(ka) sin JnIc + C (ka)I(2) (ka)

(a) 4M nJ'(ka)

m 2  2_ 2

(2 -2iif we rearrange and use the Wronskian relationship, W [J(kz)H (ka)]
Lm m rnkaw can write

(41m sin min - Cm) 21 (3

'rnIn-2 n2 n r

Substituting for Cn we find

11



sin = M Bn Jn(ka)I4 4 n, m 2Bn 2 Jrm(ka)

+ (rka)4m X B [ dn(ka)H(' (ka) - J(ka)H2 (ka)3.
21 - - n -m 2 _  n2  n

Finally, rearranging this gives

n tmn.nn 2J { J(ka) + i (i?)[J (ka)I2(ka)J (ka)- J'n(ka)H2)(ka)Jm(ka)1} (45)

A Im j(ka) sin mo"n¢

which we can solve for Bn - Once the Bn are found, the Al can be found from

A1  _U { i (BJn(ka)) - 41,J,(ka) sin 10C} 1 (

Al = { n 1 2_ n 2  
1 H 2 (ka) (46)

which determines the diffracted field in the exterior region.

2.9 Small Crack Limit

When ka -4 0 the cylinder functions have the following simple forms

J1(ka) -- (ka/ 2 ) (47)

and

./,(2) (ka) -4> _
1'r (ka/2) "  (48)

12



The equations that we must bolve also become much simpler, and we can separate the ka-

dependence from the necessary numerical matrix Inversion.

When the radius of the crack is small compared to the wavelength of the incident TM wave

we have, for small e = ka.
2

X n 2 3 m + ni = Yrm -'sin mo (49)

and

A- 4 -iy If sin1 - 2 - n2 (50)

We define the following

f -=- sin m , (51)
f MI'n+

T = mL±JL
Tm-- 2(M 2 _ n2) (52)

Bn
B e~

b- n (53)n Ml

We then have

XTb n fe, (54)
I1

n 12 _ n 21 (55)

13



Hence, we write

A l = 41- l 12_ n 2  4 1 E l g .' '( 6
An rn= nQf=

where

31m 2 lin 2-2 2-nn

For small f (that is, cracks much narrower than a wavelength) this shows that the only

significant A, is Al , given approximately by

A1 - -4 E 2Q I siln Inc (57)

We see from the above that the diffracted field behaves as (ka)2 for small ka.

Edlf. -Qll(ka) 2 H,12 (kr)sin Osin , (58)

and

H;dfX k H r(a)2H1 l(kr) sin 0sn ( 59)

If we use the far-field expressions for the Hankel functions, we write for plane TM wave

scatteLing ftom a small cylindrical crack ( r -- o}.

-tkr

E~f _QII 2i (ka)2 e' e__ sin 0sin 0 (60)

14



and

The problem of plane wave scattering from a slit in an infinitely thin conducting plane

has been solved, and its solution is well known. It has been discussed in a recent paper 14 and

for this polarization and the special case of a narrow slit, we have

-kr

E'zf  t - f 2r (ka)2 e , sin sin (62)
ZIslit 4 f Or sn4

-1
which is the same form as for the crack, but differing by a constant factor

4(9 1 1)
Performing the necessary matrix inversion we find that Q11 -0.19 which gives for TM

scattering from a small crack

of=0.1ir ()2 (2 inc
E = O.19f(ka)H'(ka) sin 0 sin 4. (63)

To check the consistency of the small-crack approximation, we have written a computer

program to solve the general-ka Eqs.. (45) and (46). and then compared the general results to

the small-crack results as ka approaches zero. For small ka the first mode dominates, and a

comparison for the two cases is shown in Figure 2. It can be seen that as the crack becomes

small, the closed-form small-crack results coalesce with the general results.

14 Shore, R.A.. and YaghJian, A.D. (1988) Incremental diffraction coefficients for planar
surfaces, IEEE T-AP, 36(No. 0:55.

15



0.23

0.22

TM 0.21
Q

0.20

0.19

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

KA

Figure 2. General and Small-Crack QTM vs. ka

3. TRANSVERSE ELECTRIC POLARIZATION

3.1 Problem Geometry

We consider a TE plane wave that is polarized in the z-direction and makes an angle 0 Inc

with the positive x-semiaxis. It is incident upon and scatters from a half-cylindrical

indentation in the ground plane (see Figure 3). The crack is described by r = a and r < 0 < 2K.

It is of infinite extent in the z-direction and the problem is two dimensional. All angles are

measured positive in the counterclockwise direction starting with 0 = 0 along the positive x-

semiaxis. Angles are in the range 0 < 0 < 2;r.

16



y
Yr

-7 7 7' 7r---

r~a

Figure 3. Problem Geometry for Incident TE Waves.

3.2 Exterior Field

The incident magnetic field is a plane wave written as

z ' (64)

where unit amplitude has been assumed and e '*It time dependence suppressed. Written in
cylindrical Bessel functions, 13 we have

H.r - I i n(k r )  (65)= = iJkj(65)

In the exterior region, the scattered field will be considered to be made up of two parts. The

first is the reflected wave that would be present if there were no crack, and the second is the
deviation from this caused by diffraction at the crack. Thus, in the exterior region we refer to
the incident, reflected, and diffracted waves. We are most interested in the diffracted field.

The reflected wave is a plane wave and is well known. We have 0 ref = 2f- $inc so that the
reflected plane wave can be written as

H ref . e irc(+0).(6z(66)

17



In terms of cylindrical Bessel functions we have

Href= inJ(kr)e(+i). (67)
Z n-

A bit of algebra and a few trigonometric identities allow us to show the sum of the incident

and reflected H,-waves satisfy the boundary condition of zero tangential electric field on the

perfectly conducting ground plane.

For the diffracted H,-wave we write

Hd'f A AH(2 )(kr) cos no, (68)
n=O

where An is an unknown modal coefficient, and we have expanded this outgoing wave in terms

of cylindrical Hankel functions (of the second kind) as well as cos no. Noting that because

ao cos no = -n sin no and sin 0 = sin rx = 0, the diffracted H 2-wave satisfies the boundary

condition on the ground plane. If we write the total He-field in the exterior region as

H 2 H~rw +Hr+Hl, (69)
Z 2' Z Zt

2
it is clear that a H = 0 for 0 = 0, r the total exterior Ht-field satisfies the boundary

condition on the perfectly reflecting ground plane.

We now proceed to write the incident and reflected Hz-fields as series over n = 0 to cc rather

than over all n. We write the incident field as

HInc =-Jo(kr) + - (kr) e - 'n ( # - 06- ) + InJ (kr) e n ( - 6C) '  (70)
n=O n=o

or

HIn -Jo(kr) +2 inJ(kr) cos n(o- 0Inc). (71)
rwO

18



Similarly for the reflected field

Href= -J(kr) + 2 nJ(kr) cos n (o + ). (72)
n=O

Hence we can write, using the idenUy cos n ± c) = Inc inc

Hint+ Hn-f =-2Jo(kr) + 4 ( 7kr) cos no)cos noncz z (73)
rn=O

Recalling our expression for the diffracted field, we write the total exterior H.-field as

H 2 = -2J (kr+ nkrcosnO +A H 2 ( kr )] cos no . (74)
n=O

3.3 Interior Field

In the interior region the total Hz-field can be written as

H I  D DJn(kr) e' ruO,  (75)
znn

n,__

where D n is an unknown modal coefficient. However, for this calculation, it will be more

convenient If we write this equivalently as

H1 = J(kr) (B cos no+ Cn sin no), (76)
rvoO

where Bn, Cn are the modal coefficients that will be determined from the boundary conditions.

19



3.4 Electric Field Component

The 0-component of the electric field is also of interest in this problem. From Maxwell's

equations we have

e (77)

so that

E =[4Jkr)cosnO +AH (kr)] cos n (78)

El = - k- J'(kr) (Bncos no+ Cnsin no), (79)

o

and, for clarity

Edif. ik XAH (80)E . - (kr) cos n. (80)

3.5 Boundary Conditions

Boundary conditions required for solving this TE problem are

E. =0 for r = a and r < 0<2r, (81)

1 2
E; =E; for r=aandO < ir, (82)

(82

HI =H 2 for r= aand 0 < < r.z z (83)
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The first condition enforces zero tangential electric field on the surface of the crack and the
last two ensure continuous tangential electric and magnetic fields across the aperture. Recall
that the total exterior field, as written, satisfies the boundary conditions along the ground
plane.

Applying the boundary conditions, we get the following three equations

E B J(ka) cos n 1 + C J(ka) sin no, = 0, (84)
r=O n=O

SB J'(ka) cos no + C J(ka) sin n02  (85)
n=O r.0

4 ninc (2)'

o-2 J(ka) + nano cosno
r=O

, BJ(ka) cos no2 + 2 CJ(ka) sin n42  (86)
rtO n=O

=-2 J0 (ka) + i 4 nJ (ka) cos no inc+A H(2(ka
n=O

where ir< 0t < 2r and 0 < 02 < n. We now define the following for convenience

F= {(4 1' cos no'- -B ) J (ka)+ AnH(2) (ka)}. (87)

G= -3J(ka), (88)

Rn =CJ(ka) (89)

aF

as well as = F' and so on. The three Boundary Condition equations thus become
a(ka) n

-)n G, cos no= n (-)nR ' sin no+ Bo Jo(ka). (90)

n=n nmrt I rt2
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where we have made the change of variables 01 -4 0 + ir and 02 -4 0'

F' cos no = R' sin no+ (2 -Bo) J o(ka) -AH2)'(ka). (91)

F cos no = " R sin no + (2-B 0 ) Jo(ka) -AoI') (ka). (92)
nl n I (2

All three equations are valid for 0 < 0 < x and all are of the same form with respect to 0.

3.6 Orthogonality

We consider the equation

F cos no = , R sin no+ K(ka), (93)

where Fn, Rn, K(ka) are not functions of Q and 0 < <. We have the following orthogonality

relations among the sinusoids

cos nocos mrndo=&6 (mn> 1), (94)2 mn 
(4

and

2n if n- m is odd
si noosmod n2- m2 (5

sin 0 if n - m is even

We also note that
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ocosmodo=O m=1,2,3... (96)

Now, we multiply Eq. (93) by cos mo and Integrate from 0 to xr,

Fn cos nocos modO= Rn sin no cos m do + K cos mo do. (97)
Jo n I n= 1l

The above relations allow us to write

Fm = 4n (M ).(98)

as a solution to Eq. (93). Here i indicates sum over n from 1 to -, for those values of n

where (n - n) Is odd.

The case m = 0 is considered separately. In this case we effectively multiply Eq. (93) by

unity and then Integrate from 0 to xr. We note

2 nodd
n

0 n even 
(99)

We then have, in addition to Eq. (98) the relation

1 R13 -'1 K (m=0). (100)

The three Boundary Condition equations thus have the solutions, for m > 1,
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n fR'~

G=-4i 2 In 22 (101)

-0 nR'
F' 4= I-2 (102)

-r nn

F=,X 2_n2J (103)

or, recalling our previous definitions

BJ'(ka) =4 i n (ka)' (104)
mm ir n n 2 - M2 )

(4 1 cos ,n i"°- B) J'(ka) + A 'I(ka) = 4 n" [,ka 1  (105)

(41cog m i""- Sm) J (ka) +A d2)~(ka) = nfC4(k)] (106)
M I r n' r2_ m 16

For m= 0 we have

XCnj'(ka) = Bo X (ka). (107)

S1,35 2 0

. -CJ' (ka) = 2 (2-B) Ja(ka) ka)}, (108)

n=1,3.5

C (ka) (2-BO) Jo(ka) +AH(2)(ka)}, (109)

These two sets of equations will be used to solve for the modal coefficients An. Bn. and C .
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3.7 Solution for Modal Coefficients

We first eliminate Am and Ao respectively from the two sets of equations above, and then

we use the Wronskian relationship, W[J (ka)H2}(ka)] - 2 1 to writeir ka

O=4 n ( M2 m J(n (ka)g-2J(ka) )m(ka)] (110)

+-n 2- (j m il

ir ka m Ir 'ka)

where we have now combined the two sets of equations. Substituting for Bin, and rearranging,

we write, for m = 0, 1. 2, 3...

Xnnf2 { j'(ka)- 22 { j'(ka) j'n(ka)H )(ka) - J(ka) J (ka)H(2 (ka)I} (111)

n 2_M2 1mn

=Yri J'(ka) cos mInc.

which is an expression that we can solve for C,. Then, when we have Cn we can write

a ° = XnC n Jn(ka)-2Jo(ka)
1 .5 (2)' (ka) (112)

and, for 1= 1.2, 3...

[ (nCJn(_ka) iJ I

A [= (n(kJ1 -4i J,(ka) cos 10Iw I (113)
ir n n 2_ 12 1 (2)' ka)(13

3.8 Small Crack Limit

When ka -- 0 the cylinder functions have the following simple forms
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Jka +(ka/2)'
(114)

and

(2 (2)I l (k)10; H o2(ka) ---> n(ka).

I r (ka/2) i r (115)

The equations that we must solve also become much simpler, and we can separate the ka-

dependence from the necessary numerical matrix inversion.
When the radius of the crack is small compared to the wavelength of the incident TE wave!

we have. setting m = 0 in Eq. (I I1) and then substituting into Eq. (112),

Ao= i A (ka)2 I- 2

2 1 I (ka)2 1n(ka) (116)
L 2

and, with er= ka/2 << 1 and c = CJ'(ka).

2' H2nC t 1 '
A =8te-1  (1 1), (117)

where the cn are found from

m
3n+m c i r rck--cos mI (nm n l). (118)nn 2 _ m 2 ) n MI E

If we define

f = ir i m -m cos mO inc ,
m MI (1 19)

T = 3n+mm n2_ m2 (120)
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we have

Smncn fm-i (m, n1). (121)
n

Hence, we write

A l n 1 , 4 fer (122
=1 Itnr 212 mm1Er

where

* 4 nT 1
rnm

Om= n 2_ 1 2 Im

For small e (that is, cracks much narrower than a wavelength) this shows that the only

significant A, are A o , A, . with A, given approximately by

2 inC 1 ka2 inc
A, M-4yre Q 1 1 cos0 =- gIr(ka) 2 c (123)

We see from the above that the diffracted field behaves as (ka)2 for small ka,

Hd .-(ka)2[ i-1 + 2 -)Ho2l (kr) +k2a2  Q(k)HH(kr)cos ocos (124)z 2 1I+ I (ka)2 1n  (ka)

If we use the far-field expressions for the Hankel functions, we write for plane TE wave

scattering from a small cylindrical crack (r -4o)

H d - -I(ka)2 e3R/e + 2 +2Q cos Ocos 0 inc 125
I (k2 in (ka)
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where

c- II (126)

Performing the necessary matrix inversion we find that Qi 0.18 which gives for TE far-field

scattering from a small crack

H'e [ l-(k a)e 1,, kri.e._112 -0.18 cos Ocos (0 (127)
i I- +1(ka) In (ka)

A computer program has been written to check the consistency of the small crack

approximation. The general expressions. (Eqs. (111) - (113)], are solved numerically and then
compared with the small-crack results. Figure 4 shows the negative of the bracketed quantities

from Eq. (116) compared to the general-ka expressions as ka becomes small. Note that for ka
very small, the bracketed terms in Eq. ( 16) tend to negative unity. Figure 5 shows the

coefficient Q I compared to the lowest mode coefficient from the general program as ka

becomes small. For small values of ka, [where (ka)2 can be neglected compared to unityl the

lowest mode dominates, and the general and small-crack coefficients of this mode agree.

The problem of plane wave scattering from a slit in an infinitely thin conducting plane

has been solved and is well known. For the TM polarization, we found the results for

scattering from the small semicircular crack to be in agreement with those for the slit

(differing by a constant factor.) For TE scattering from a narrow slit. Reference [141 gives

dif =f2- 1 e3x/4 e - 'k r I + .251ka) 2(sin 2 n - c02 2) in

H Ir e' e--+ (2- 0) + 0.25 (ka)2 cos 0cos 0, (128)
Z fkr 2In (ka/4) +2 y + OrI

where y is Euler's constant. We note that for the TE polarization, the leading term for the
small crack is (ka)2 while the leading term for the slit is In ( and we conclude that for the

I(ka)
TE polarization the narrow slit scatters more than the small crack. The physical reasoning is
as follows. For TM polarization, the currents excited by the incident electric field are normal
to the crack/slit. In the former case the small crack and the small slit appear to the excited

currents to be similar, while in the latter case the currents are stopped completely by the open

circuit of the slit, but not by the perfectly conducting crack.
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Figure 4. General and Small-Crack Coefficients of A TE.
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Figure 5. General and Small-Crack QTE vs. ka.

4. SUMMARY

In this report we have developed expressions for the fields scattered from a semicylindrical

crack in a perfectly conducting ground plane for both transverse magnetic and transverse

electric polarizations. Although a numerical matrix inversion is required in the solution,

when the crack is much narrower than the wavelength of the incident radiation, the ka-

dependence is removed from the numerical matrix inversion. The closed-form results that are

found for small cracks are thus functions of ka and are valid for any value of ka such that ka 2

can be neglected compared to unity.

Since the TM and TE results for small cracks are functionally dependent upon ka, they can

be combined vectorially to consider off-normal scattering from small cracks. Because of this,

the results presented here for scattering from a small straight crack can be extended by such

methods as Incremental Diffraction Coefficients (IDC) 14 to calculate the scattering from a

small curved crack. Large reflector antennas are typically assembled from several sections.

leaving gaps between them. Aircraft have gaps around doors and access panels. The former
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affect the radiation pattern of the antenna and the latter contribute to the aircraft's radar
cross section. Using IDC. Shore and YaghJlan 14 have modeled these as slits In thin
conducting screens, but the geometry of a cylindrical crack seems a more physically realistic
model. Since the crack and slit only agree well for the (small ka) TM polarization, real cracks
may be better approximated using the results presented here.
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